TransStart® FastPfu DNA Polymerase-北京意昂3(TransGen Biotech)_官方主页

意昂3_意昂3平台_意昂3代理-「官方直营招商注册入口」

TransStart® FastPfu DNA Polymerase

FastPfu快速高保真DNA 聚合酶

目录号规格单价
AP221-01250 units550
AP221-02500 units 990
AP221-036×500 units4980
说明书
质检报告
立即下单
加入购物车

产品详情介绍

TransStart® FastPfu DNA Polymerase 是用于快速PCR的热启动高保真DNA聚合酶,TransStart® FastPfu DNA Polymerase扩增效率高、扩增速度快(4 kb/min,是普通Pfu酶的8),克服了普通Pfu酶扩增效率低、产量低和扩增速度慢(0.5 kb/min)的缺陷,极大地缩短了反应时间。

· 保真性是EasyTaq® DNA Polymerase54倍。

· 扩增产物为平端,可直接克隆于pEASY®-Blunt系列载体中。

· 基因组DNA片段的扩增 (≤ 15 kb)

· Plasmid DNA片段的扩增 (≤ 20 kb)

产品组成

实验数据

image.png

image.png

References

1 Fan J, Ran H, Wei P L, et al. Pretrichodermamide A Biosynthesis Reveals the Hidden Diversity of Epidithiodiketopiperazines[J]. Angewandte Chemie, 2023.(IF 16.82)

2 Wang Y, Zhang S, Yang X, et al. Mesoscale DNA feature in antibody-coding sequence facilitates somatic hypermutation[J]. Cell, 2023.(IF 66.00)

3 Fan J, Ran H, Wei P L, et al. An ortho‐Quinone Methide Mediates Disulfide Migration in the Biosynthesis of Epidithiodiketopiperazines[J]. Angewandte Chemie International Edition, 2023.(IF 16.82)

4 Zong Y, Liu Y, Xue C, et al. An engineered prime editor with enhanced editing efficiency in plants[J]. Nature Biotechnology, 2022.(IF 54)

5 Lei Y, Fei P, Song B, et al. A loosened gating mechanism of RIG-I leads to autoimmune disorders[J]. Nucleic acids research, 2022.(IF 16.971)

6 Zhang H, Zhu Y, Liu Z, et al. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness[J]. Cell, 2022.(IF 66.85)

7 Zhang H, Li Z, Zhou S, et al. A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin[J]. Nature Communications, 2022.(IF 17.694)

8 Li Y, Zhao L, Zhang Y, et al. Structural basis for product specificities of MLL family methyltransferases[J]. Molecular Cell, 2022.(IF 19.328)

9 Lei Z, Meng H, Liu L, et al. Mitochondrial base editor induces substantial nuclear off-target mutations[J]. Nature, 2022.(IF 69.50)  

10 Lin Q, Jin S, Zong Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021.(IF 54.90)

11 Song B, Chen Y, Liu X, et al. Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains[J]. Immunity, 2021.(IF 31.74)

12 Zong Y, Liu Y, Xue C, et al. An engineered prime editor with enhanced editing efficiency in plants[J]. Nature Biotechnology, 2022.(IF 54.00)

13 Li C, Zhang R, Meng X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature biotechnology, 2020.(IF 35.72)

14 Lin Q, Zong Y, Xue C, et al. Prime genome editing in rice and wheat[J]. Nature biotechnology, 2020.(IF 31.90)

15 Wang S, Zong Y, Lin Q, et al. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9[J]. Nature biotechnology, 2020.(IF 36.55)

16 Chen J, Ou Y, Yang Y, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing[J]. Nature, 2018.(IF 40.13)

FAQ
产品指南

1638772065147640.png



质检报告

登录

captcha

注册

*收货地址:
captcha

客服

微信

友情链接: